

MANUFACTURING SPECIFICATION

1310 nm DFB Laser DiodeChip DL-DFB310055B-025A

Doc #: DFB0001-00-000

Revision: A

Page 0 of 6

REVISION HISTORY						
Pov	Revision Date	Originator	Affected		Description of change	
NUV			Page	Clause	Description of change	
Prelim	06-Nov-2015	Abdullah Rasmita	All	All	Initial: Prelim Production Release	
Prelim 1	09-Dec-2015	Abdullah Rasmita	3	F	Prelim revision: change optical output power requirement	
Prelim 2	28-Mar-2016	Hafiziarto	All	A,B,F,G, H	Updated specified values, added specs at 85C test conditions. Added burn-in specifications	
Rev A	22-Aug-2016	Choo Lay Cheng	2,3	A,F	Update specifications & Insert H to J	

Originator	Choo Lay Cheng		
Approval	Name	Signature	Date
Product Engineering	Hafiziarto J. Mukhtar		
Engineering Director	Choo Lay Cheng		
Quality Assurance	Julius B. Ebonite		
VP Engineering	Chan Yuen Chuen		
СТО	Lam Yee Loy		

This document is the property of DenseLight and contains confidential and proprietary information of DenseLight. Neither it nor the information contained therein shall be disclosed to others or used by other except as authorized by DenseLight in writing.

DENSELIGHT 6 Changi North St. 2, S498831 SINGAPORE Tel: (65) 64157989 Fax: (65) 64154465 www.denselight.com

SPECIFICATIONS

1310 nm DFB Laser Diode Chip

DL-DFB310055B-025A

DenseLight reserves the right to make product design or specifications changes without notice.

DFB0001-00-000 Page 1 of 6

A. PRODUCT DESCRIPTION

DenseLight DL-DFB310055B-025A is an uncooled DFB laser diode operating with an output power of 5mW at 25°C at the 1310nm wavelength and engineered for transmission up to 2.5Gbps. It operates over a wide temperature range from -10°C to 85°C without any need for a Peltier cooler and temperature controller.

B. FEATURES

- Uncooled operation from -10 to 85°C
- Output power of 10mW at 25°C, Ith+20mA (typical)
- Lasing wavelength of 1310nm
- Typical SMSR \geq 35dB
- Designed for 2.5Gbps high speed transmission

C. PACKAGING

• DFB Laser diode die (chip) with coated facets

D. APPLICATIONS

- Uncooled PON Applications
- FTTx Networks

DenseLight reserves the right to make product design or specifications changes without notice.

E. ABSOLUTE MAXIMUM RATINGS

Operation beyond the absolute maximum ratings can cause degradation in device performance leading to permanent damage to the device.

Parameter	Symbol	Condition	Min	Max	Unit
Reverse voltage	V _R	-	-	1	V
Forward current	$I_{\rm F}$	-	-	120	mA
Operating temperature	Top	-	-10	85	°C
Storage temperature	T _{stg}	Unbiased	-40	90	°C
Electro static discharge (ESD)	V _{ESD}	Human body model	-	500	V

F. ELECTRO-OPTICAL CHARACTERISTICS

Performance is based on laser diode die singulated from bar and mounted onto heat-dissipating submount.

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Ontigal output nower	Po	$T_{op} = 25^{\circ}C, I_F = I_{th} + 20mA$	10.5	11	-	mW	
Optical output power		$T_{op} = 85^{\circ}C, I_F = I_{th} + 20mA$	-	10	-		
Forward voltage	V _F	$T_{op} = 25^{\circ}C, I_F = I_{th} + 20mA$	-	1.3	1.5	V	
Threshold current	т	$T_{op} = 25^{\circ}C$	-	9	10	mΛ	
	1 _{th}	$T_{op} = 85^{\circ}C$	-	22	-	IIIA	
Slope officiency		$T_{op}=25^{o}C,I_{F}=I_{th}+20mA$	-	0.55	-	XX/A	
Slope entciency	η_s	$T_{op} = 85^{\circ}C, I_F = I_{th} + 20mA$	-	0.45	-	w/A	
Rear Power	P _R	$T_{op} = 25^{\circ}C, I_F = I_{th} + 20mA$	250	-	-	μW	
Center wavelength	$\lambda_{\rm c}$	$T_{op} = 25^{\circ}C, I_F = I_{th} + 20mA$	1290	1310	1330	nm	
Side Mode Suppression Ratio	SMSR	$T_{op} = 25^{\circ}C, I_F = I_{th} + 20mA$	35	45	-	dB	
Temperature dependence of center wavelength	$\Delta\lambda/\Delta T$	CW	-	0.1	-	nm/ºC	
Beam divergence angle		$T_{op} = 25^{\circ}C, I_F = I_{th} + 20mA,$	_	25	_	degree	
(parallel)	UH	FWHM	-	25	-	uegree	
Beam divergence angle	0	$T_{op} = 25^{\circ}C, I_F = I_{th} + 20mA,$		25		dograa	
(perpendicular)	θv	FWHM	-	55	_	uegiee	
Modulation bandwidth	$\mathbf{BW}_{\mathrm{mod}}$	$T_{op} = 25^{\circ}C, I_F = I_{th} + 20mA$	5	-	-	GHz	

DenseLight reserves the right to make product design or specifications changes without notice.

DFB0001-00-000

G. PHYSICAL CHARACTERISTICS

Parameter	Symbol	Typical	Unit
Chip dimensions	LxWxH	250 x 200 x 100	μm
Emission spot from chip edge	d	65	μm
Wirebond pad	хху	100x100	μm

H. TYPICAL PERFORMANCE

DenseLight reserves the right to make product design or specifications changes without notice.

DFB0001-00-000

I. BURN-IN AND TEST

The laser diode chips have not undergone burn-in screening. The user is expected to perform burn-in screening after assembly of the laser diode chip onto a submount or into a TO-can package. The recommended burn-in screening conditions are as follows:

Temperature	: 85°C
Operating mode	: ACC
Drive current	: 90mA
Duration	: 48 hours

DenseLight will perform the necessary wafer/cell buyoff using chips mounted on DenseLight standard submounts, based on statistical sampling plan for AQL of 0.4%, Special Inspection Levels S-2 as per ANSI/ASQ Z1.4. Only those associated chips that have passed the criteria described in the "Wafer Acceptance Test" will their corresponding cells, and/or bars, be accepted for use.

Since the product is in chip form, its eventual electro-optical performance will depend not only on chip performance but also on its assembly process. If the chip is assembled in a proper way, the performance described in specifications table can be expected.

J. VISUAL INSPECTION

Refer to document "DFB Chip Inspection Criteria", which will represent the visual mechanical criteria upon which acceptance of product has been made. The acceptance criteria represented in this specification does not impede the functions of the DFB chip in its electro-optical characteristics.

K. OTHER NOTIFICATIONS

1. Quality Assurance

After any processing of the laser diode chip into a package product (TO-Can/BTF/DIL), the performance, yield and reliability of the product, in which the chip is applied, are subject to change due to the customer's handling, assembly, testing and processing. All assembly and handling related matters that are out of the control of DenseLight are at the customer's responsibility. DenseLight does not have any responsibility for field failures attributed to a customer process.

DFB0001-00-000

2. Reliability

DenseLight will endeavor to continue to improve the quality and reliability of its laser diode chips, and it should be recognized that laser diode chips can fail due to their own intrinsic characteristics. It is thus required that the customers' products and processes of manufacture are designed with full regard to error avoidance and prevention, and high capability for assembly level reliability.

3. Specification

The information provided by DenseLight, including but not limited to technical specification, customer recommendations, application notes related to the laser diode chip, are believed to be reliable and accurate, and is subject to change as and when required.

4. Functional Samples

Functional samples have a prefix of -F to the product number, and is a sample that is designed according to DenseLight specification and/or customer request. The purpose of the functional sample is to check and confirm the product usability and feasibility. Thus, the sample may be used as for R&D or prototype. It will be the discretion of DenseLight to determine if the sample is to be manufactured in qualified production lines.

5. Working Samples

Working samples are those parts that have a suffix of -W to the product number, and is a sample to evaluate, confirm and qualify the product specifications. Basically, DenseLight guarantees the performance at the BOL (Beginning of Life), but not all qualifications may be completed. This product may not be manufactured in qualified production lines, until DenseLight releases the product for general sales. DenseLight reserves the right to change prices, features, functions, specification, capabilities and release schedules as per notifications to the customer.

DenseLight reserves the right to make product design or specifications changes without notice.