SINGLE FREQUENCY LASER DIODES

Distributed Feedback Laser

Revision 0.94

aalevard

2021-02-05

General Product Information Product Application Tunable 785 nm DFB Laser Spectroscopy with hermetic 14-Pin Butterfly Housing (RoHS compliant) Metrology including Monitor Diode, Thermoelectric Cooler and Thermistor with PM Fiber and Angled Physical Contact (APC)

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	Ts	°C	-40		85
Operational Temperature at Case	Tc	°C	-40		85
Operational Temperature at Laser Chip	T _{LD}	°C	10		50
Forward Current	I _F	mA			170
Reverse Voltage	V _R	V			2
Output Power	P _{opt}	mW			45
TEC Current	I _{TEC}	А			1.8
TEC Voltage	V _{TEC}	V			3.2

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _{case}	°C	-20		65
Operational Temperature at Laser Chip	T _{LD}	°C	15		45
Forward Current	I _F	mA			150
Output Power	P _{opt}	mW	10		40

Characteristics at T_{LD} = 25° C at BOL

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ_{C}	nm	784	785	786
Linewidth (FWHM)	Δλ	MHz		2	
Mode-hop free Tuning Range	$\Delta \lambda_{tune}$	pm		1500	
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.06	
Current Coefficient of Wavelength	dλ / dl	nm / mA		0.003	
Sidemode Supression Ratio	SMSR	dB		50	

eagleyard Photonics GmbH

Rudower Chaussee 29

12489 Berlin GERMANY www.toptica-eagleyard.com info@toptica-eagleyard.com fon +49.30.6392 4520

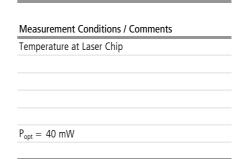
Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Measurement Conditions / Comments

measured by integrated Thermistor ex fiber

Measurement Conditions / Comments


see images on page 4
$P_{opt} = 40 \text{ mW}$
see note 1)
$P_{opt} = 40 \text{ mW}$

This data sheet is subject to change without notice. © eagleyard Photonics

Revision 0.94

SINGLE FREQUENCY LASER DIODES **Distributed Feedback Laser**

Characteristics at $T_{LD} = 25^{\circ}$	C at BOL				cont'd
Parameter	Symbol	Unit	min	typ	max
Mode-hop free Temperature Range	T _{LD}	°C	15		45
Mode-hop free Power Range	P _{opt}	mW	10		40
Laser Current @ P _{opt} = 40 mW	I _{LD}	mA			150
Slope Efficiency	η	W / A	0.2	0.4	0.7
Threshold Current	l _{th}	mA			70
Polarization Extinction Ratio	PER	dB		15	

1) This variant allows wavelength tuning by temperature or current variation; in case of external backreflections small mode-hops of 100 MHz or less may appear. The use of a BFW01 or TOC03 package variants and effective optical isolation is recommended for spectroscopic application requiring absolutely mode-hop-free tuning. A butterfly package with integrated isolator (BFY1x or BFW1x) is also available for some lasers.

Monitor Diode					
Parameter	Symbol	Unit	min	typ	max
Monitor Detector Responsivity	I _{mon} / P _{opt}		1		20

Measurement Conditions / Comments $U_R = 5 V$

Thermoelectric Cooler

Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		0.4	
Voltage	U _{TEC}	V		0.8	
Power Dissipation (total loss at case)	Ploss	W		0.5	
Temperature Difference	ΔΤ	К			50

Measurement Conditions / Comments				
$P_{opt} = 40 \text{ mW}, \Delta T = 20 \text{ K}$				
$P_{opt} = 40 \text{ mW}, \Delta T = 20 \text{ K}$				
$P_{opt} = 40 \text{ mW}, \Delta T = 20 \text{ K}$				
$P_{opt} = 40 \text{ mW}, \Delta T = Tcase - TLD $				

Thermistor (Standard NTC Type)

Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	А			1.1293 x 10) -3
Steinhart & Hart Coefficient B	В			2.3410 x 10)-4
Steinhart & Hart Coefficient C	С			8.7755 x 10) -8

$T_{LD} = 25^{\circ} C$	
$R_{1}/R_{2}=e^{\beta(1/T_{1}\cdot1/T_{2})}$ at $T_{LD}=$	0° 50° C
$1/T = A + B(\ln R) + C(\ln R)^{3}$	
T: temperature in Kelvin	
R: resistance at T in Ohm	

eagleyard Photonics GmbH

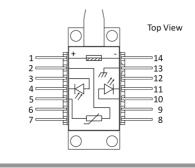
Rudower Chaussee 29

12489 Berlin GERMANY www.toptica-eagleyard.com info@toptica-eagleyard.com fon +49.30.6392 4520

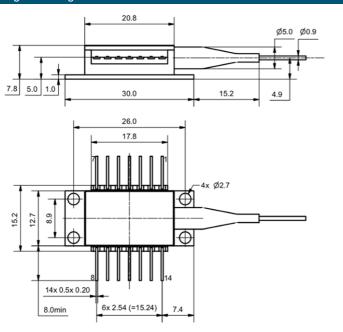
This data sheet is subject to change without notice. © eagleyard Photonics

2021-02-05

Revision 0.94

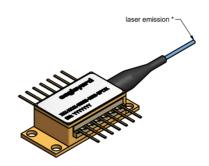

TOPTICA eagleyard

2021-02-05

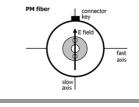

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Pin Assignment

1	Thermoelectric Cooler (+)	14	Thermoelectric Cooler (-)
2	Thermistor	13	Case
3	Photodiode (Anode)	12	not connected
4	Photodiode (Cathode)	11	Laser Diode (Cathode)
5	Thermistor	10	Laser Diode (Anode)
6	not connected	9	not connected
7	not connected	8	not connected



Package Drawings


Fiber and Connector Type

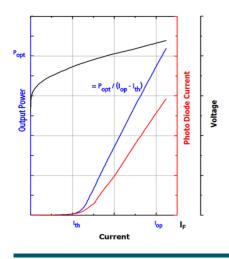
PM Fiber	900 / 125 / 5.5 $\mu m,$ UV/Polyester-elastomer Coating (l = 1 +/-0.1 m)
Connector	FC/APC (narrow key / 2mm)

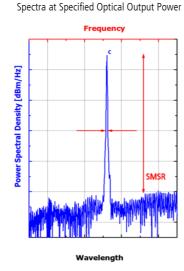
Caution. Excessive mechanical stress on the package can lead to a damage of the laser. See <u>instruction manual</u> on www.eagleyard.com

Measurement Conditions / Comments

eagleyard Photonics GmbH Rudower Chaussee 29 12489 Berlin GERMANY www.toptica-eagleyard.com info@toptica-eagleyard.com fon +49.30.6392 4520

This data sheet is subject to change without notice. © eagleyard Photonics


AIZ-16-0222-1415


Revision 0.94

SINGLE FREQUENCY LASER DIODES **Distributed Feedback Laser**

Typical Measurement Results

Output Power vs. Current

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB laser is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

eagleyard Photonics GmbH www.toptica-eagleyard.com info@toptica-eagleyard.com fon +49.30.6392 4520

Rudower Chaussee 29

12489 Berlin GERMANY

This data sheet is subject to change without notice. © eagleyard Photonics

2021-02-05