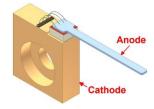

PH760DBR 760nm Series

High-Power Single-Frequency Laser Diode

Technology


- DBR Single-Frequency Laser Chip
- AlGaAs QW Active Layer
- Facets passivated to withstand high power without catastrophic optical damage (COD)
- Epi designed for high reliability

Features

- Wavelength tunable across several lines of the O₂ spectrum around 760nm
- Pulsed operation for spectral stability at short pulse lengths
- High power for CW applications
- High Slope Efficiency

Description

This monolithic laser diode incorporates a distributed Bragg reflector (DBR) for stable frequency performance over its life time. It provides a diffraction limited, single lateral and longitudinal mode beam. Facets are passivated for high reliability. Designed specifically for O_2 detection.

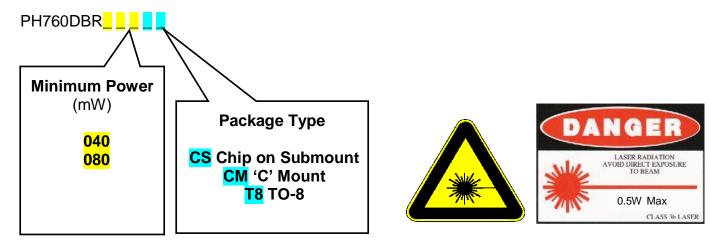
Absolute Maximum Ratings

Parameter	Symbol	Unit	Min	Max
Storage Temperature	T _{STG}	ပ္	0	80
Operating Temperature	T _{OP}	ů	10.0	40
CW Laser Forward Current, T=25°C	I _F	mA	ı	120**
Laser Reverse Voltage	V_R	V	1	0.0
Photodiode Forward Current <u>1</u> /	I_P	mΑ	ı	5.0
Photodiode Reverse Voltage 1/	V_R	٧	1	20.0
Photodiode Dark Current, V _R =10V, LD I _F =0, 1/	I _D	nA	1	50
TEC Current <u>1</u> /	I _{TEC}	Α	-2.0	2.0
TEC Voltage <u>1</u> /	V_{TEC}	٧	-6.0	6.0
Thermistor Current 1/	I _{THRM}	mΑ	1	1.0
Thermistor Voltage <u>1</u> /	V_{THRM}	V	-	10
Lead Soldering Temperature, 10 sec. Max.	-	ç	-	260

1/ TO8 package **Do not exceed drive current or operating power of supplied LIV

CW Characteristics at $T_C = 2$	5°C unless	otherwise	specified
---------------------------------	------------	-----------	-----------

Parameter	Symbol	Unit	Min	Тур	Max
Center Wavelength @ 150mA	$\lambda_{ m c}$	nm	759	760	762
Optical Output Power @ 150mA	Po	mW	See Power Options Call-out		
Slope Efficiency	$\eta_{\sf d}$	W/A	0.6	0.75	ı
Threshold Current	I_{th}	mΑ	ı	70	90
Laser Series Resistance	R_s	Ω	ı	2.0	2.5
Laser Forward Voltage @ 150mA	V_{F}	V	ı	2.0	2.5
Thermistor Resistance @ 25°C, 2/	R_T	ΚΩ	-	10	-
Photodiode Dark Current, V _R =10V, LD I _F =0, <u>2</u> /	I_{D}	nA	-	-	50
Laser Line Width @ 150mA	Δv	MHz	0.7	1	10
Polarization Extinction Ratio, 1/	PER	dB	-16	-19	-
Beam Divergence @ FWHM	θιι Χ θ⊥	0	-	6 X 26	8 X 30
Side Mode Suppression Ratio	SMSR	dB	-30	-	-
Laser Polarization				TE	
Mode Structure			Fundamental Mode		


2/TO-8 package

Handling Precautions

These devices are sensitive to ESD. When handling the module, grounded work area and wrist strap must be used. Always store in an antistatic container with all leads shorted together.

How To Order

Part number example: PH760DBR040CM. Assign optical power from those available. Use a three-digit format for all power entries. Call factory for special frequency selection and certification to certain atomic absorption lines.

Photodigm, Inc. reserves the right to make changes in design, specifications and other information at any time, and without prior notice. The information contained within the product bulletin is believed to be accurate. However, no responsibility is assumed for possible inaccuracy or omission. Any information contained herein shall legally bind Photodigm, Inc. only if it is specifically incorporated in the terms and conditions of a sales agreement.