Is 1Tb/s Ready for Prime Time?
Engineering Reality Check

Terabit Optical Ethernet
IEEE Photonics Society Summer Topical
Montreal, Canada
18 - 20 July 2011
Chris Cole
Ilya Lyubomirsky

chris.cole@finisar.com
Ilya.lyubomirsky@finisar.com
Objective: Rain on 1Tb/s Parade

Unhappy 1Tb/s Researchers
Know Your Audience

- First version of this presentation was given at the Tera Santa Workshop in Tel Aviv on 13 April 2011
- Tera Santa is consortium of leading companies and universities in Israel backed by Israeli Office of the Chief Scientist with the objective to develop world's first Tb/s OFDM-based optical network
- The Workshop audience was unperturbed by being rained on
- This was later explained by Prof. Dan Sadot, Chairman, Electrical and Computer Engineering, Ben Gurion University (Tera Santa member):

 In Israel, as we are a relatively dry country, every type of rain is considered "blessing rain"
Outline

Ethernet & Transport Compatibility

- 100Gb/s Ethernet Technology
- Beyond 100Gb/s Ethernet Technology
- 100Gb/s Transport Technology
- Beyond 100Gb/s Transport Technology
- Recommendations
10GbE and OTU2

- OTU2 defined by ITU-T $\rightarrow \sim 10.7\text{Gb/s}$
 - $\sim 10\text{Gb/s}$ payload; SONET OC-192 or SDH STM-64
- 10GbE LAN and WAN subsequently defined by IEEE
 - 10GBASE-R LAN Physical Coding Layer: 10Gb/s data with 64B/66B encoding $\rightarrow \sim 10.3\text{Gb/s} > 10\text{Gb/s}$ payload
 - 10GBASE-W WAN Interface Sub-layer defined to be compatible with 10Gb/s SONET and SDH $\rightarrow \sim 10\text{Gb/s}$
- 10GbE PHY ICs initially supported both LAN and WAN
 - required two separate processing cores; expensive
 - Not needed by vast majority of 10GbE users (data center operators) who only use LAN
- 10GbE LAN became the dominant interface
10GbE and OTU2, cont.

- 10GbE LAN Transport alternatives:
 - remove Preamble or IPG → not transparent
 - over-clock OTU2: OTU2e → not networkable

- Mess
4x 10GbE and OTU3

- OTU3 defined by ITU-T $\rightarrow \sim 43$Gb/s
 - ~ 40Gb/s payload; SONET OC-768 or SDH STM-256
- 10GbE LAN is the dominant interface
- 4x 10GbE LAN $\rightarrow \sim 41.2$Gb/s > 40Gb/s payload
- 4x 10GbE LAN Transport alternatives:
 - remove Preamble or IPG \rightarrow not transparent
 - over-clock OTU3: OTU3e \rightarrow not networkable
- Mess
40GbE and OTU3

- 40GbE LAN defined by IEEE → ~41.2Gb/s
- 40GbE PCS layer defined to have a small control word set to enable fixed trans-coding to OTU3
- 40GbE LAN Transport:
 - OTU3 → transparent and networkable
- No mess
100GbE and OTU4

- 100GbE LAN defined by IEEE → \(\sim 103 \text{Gb/s} \)
- OTU4 initial proposals in ITU-T → \(\sim 160 \text{Gb/s} \) & \(\sim 130 \text{Gb/s} \)
 - Efficiently carry multiple 40Gb/s payloads
 - Inefficiently carry 100GbE payload
- OTU4 then defined by ITU-T → \(\sim 112 \text{Gb/s} \)
 - Efficiently carries 100GbE payload
 - transparent and networkable
- No mess
Future Ethernet and Transport Rates

IEEE and ITU-T are strongly committed to:
- Full Ethernet and OTN compatibility
- OTN support in Ethernet Specifications, ex. 40GbE
- Efficient carrying of Ethernet over OTN, ex. OTU4

OTU5 will be the next OTN rate after OTU4
- OTU5 will be defined to efficiently carry next Ethernet rate after 100GbE

OTU6 will be the following OTN rate after OTU5
- OTU6 will be defined to efficiently carry following Ethernet rate
Outline

- Ethernet & Transport Compatibility
 - 100Gb/s Ethernet Technology
 - Beyond 100Gb/s Ethernet Technology
 - 100Gb/s Transport Technology
 - Beyond 100Gb/s Transport Technology
 - Recommendations
100GbE WDM SMF Gen1 Transceiver

100GBASE-ER4, 40km Transceiver places a SOA before the DeMux
100GbE WDM SMF Gen2 Transceiver

Long term, high volume architecture
100GbE WDM SMF Key Technology

- High yield Photonic Integrated Circuit (PIC) WDM quad DFB array
- Ex. monolithic InP quad 1310nm band DFB laser array with AWG, 1.1mm x 2.4mm PIC, CyOptics Inc.
100GbE Parallel MMF Gen1 Transceiver
100GbE Parallel MMF Gen2 Transceiver

Long term, high volume architecture
100GbE Parallel MMF Key Technology

- High yield Photonic Integrated Circuit (PIC*) parallel quad VCSEL array
- Ex. monolithic GaAs quad 850nm VCSEL array, 0.25mm x 1.0mm PIC, Finisar Corp.

* The “C” in PIC is a stretch since there are no optical connections.
Outline

- Ethernet & Transport Compatibility
- 100Gb/s Ethernet Technology
 - Beyond 100Gb/s Ethernet Technology
- 100Gb/s Transport Technology
- Beyond 100Gb/s Transport Technology
- Recommendations
Beyond 100GbE Rate Requirements

- Requirements from end users
 - Provide meaningful data rate increase
 - Maintain parity with 100GbE bit/sec cost

- Requirements from developers
 - Leverage 100GbE R&D investment
 - Leverage ramping 100GbE product volumes

- Next data rate products should be based on 100GbE technology to control R&D and unit costs

- 400GbE meets these requirements

- Technology for above 400GbE (ex. 1TbE) does not exist, will require extensive R&D, and does not meet these requirements
400GbE WDM SMF Gen1 Transceiver

Different Gen2 architecture is required to support higher I/O density
400GbE WDM SMF λ Specifications

<table>
<thead>
<tr>
<th>Lane</th>
<th>Center Frequency THz</th>
<th>Center Wavelength nm</th>
<th>Approximate Wavelength @nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1330 band</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L33</td>
<td>225.8</td>
<td>1327.69</td>
<td>1328</td>
</tr>
<tr>
<td>L32</td>
<td>226.6</td>
<td>1323</td>
<td>1323</td>
</tr>
<tr>
<td>L31</td>
<td>227.4</td>
<td>1318.35</td>
<td>1318</td>
</tr>
<tr>
<td>L30</td>
<td>228.2</td>
<td>1313.73</td>
<td>1313</td>
</tr>
<tr>
<td>1310 band</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L23</td>
<td>229</td>
<td>1309.14</td>
<td>1310</td>
</tr>
<tr>
<td>L22</td>
<td>229.8</td>
<td>1304.58</td>
<td>1305</td>
</tr>
<tr>
<td>L21</td>
<td>230.6</td>
<td>1300.05</td>
<td>1300</td>
</tr>
<tr>
<td>L20</td>
<td>231.4</td>
<td>1295.56</td>
<td>1295</td>
</tr>
<tr>
<td>1290 band</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L13</td>
<td>232.2</td>
<td>1291.1</td>
<td>1292</td>
</tr>
<tr>
<td>L12</td>
<td>233</td>
<td>1286.66</td>
<td>1287</td>
</tr>
<tr>
<td>L11</td>
<td>233.8</td>
<td>1282.26</td>
<td>1282</td>
</tr>
<tr>
<td>L10</td>
<td>234.6</td>
<td>1277.89</td>
<td>1277</td>
</tr>
<tr>
<td>1270 band</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L03</td>
<td>235.4</td>
<td>1273.55</td>
<td>1275</td>
</tr>
<tr>
<td>L02</td>
<td>236.2</td>
<td>1269.23</td>
<td>1270</td>
</tr>
<tr>
<td>L01</td>
<td>237</td>
<td>1264.95</td>
<td>1265</td>
</tr>
<tr>
<td>L00</td>
<td>237.8</td>
<td>1260.69</td>
<td>1260</td>
</tr>
</tbody>
</table>
400GbE Parallel MMF Gen1 Transceiver

Different Gen2 architecture is required to support higher I/O density
400GbE MTP Connector Specifications

- USCONEC Proposal
- Same core technology as originally developed by NTT Laboratories researchers T. Satake and colleagues
- Same critical dimensions as existing MTP connectors
- Width increased to support 2x16 fibers
400GbE Transceiver Alternatives

- **On/Off modulation**
 - 16 x 25Gb/s NRZ lasers (VCSEL and DFB) baseline
 - Linear extension of 100GbE technology
 - Only requires process yield improvements
 - Benchmark against which to measure other proposals

- **Multi-level amplitude modulation**
 - Ex. 8 x 50Gb/s PAM-N lasers (VCSEL and DFB)
 - Coding DSP (ex. TCM)
 - Multiple implementation and SNR challenges

- **Complex (amplitude and phase) modulation**
 - Ex. 4 x 100Gb/s PM-QPSK (MZM)
 - Coherent DSP
 - No technology exists that can be commercialized
Beyond 400GbE Alternatives

Following after 400GbE:

- 1TbE?
 - 2.5x is a small increase from 400GbE
 - unlikely to justify a huge investment
 - unlikely to meet bandwidth growth demands

- 1.2TbE?
 - 3x is a small increase from 400GbE
 - unlikely to justify a huge investment
 - 3 is an odd number

- 1.6TbE?
 - 4x increase from 400GbE (same as 10GbE to 40GbE)
 - Sufficient increase to justify a huge investment
1.6TbE Transceiver Alternatives

- 64 x 25Gb/s NRZ lasers
 - Not practical
 - Too many channels

- 32 x 50Gb/s PAM4 lasers
 - Not practical
 - Too many channels

- Complex (amplitude and phase) modulation
 - Only feasible alternative to control channel count
 - Ex1. 16 x 100Gb/s PM-QPSK (MZM)
 - Ex2. 8 x 200Gb/s PM-16QAM (MZM)
 - Requires complex CMOS ICs and PICs
 - No technology exists that can be commercialized
 - Excellent opportunity for long term academic research
Outline

- Ethernet & Transport Compatibility
- 100Gb/s Ethernet Technology
- Beyond 100Gb/s Ethernet Technology
- 100Gb/s Transport Technology
- Beyond 100Gb/s Transport Technology
- Recommendations
OTU4 28GBd PM-QPSK TX

1x 100Gb/s λ Architecture

Soft Decision (SD) FEC requires 32Gb/s TX
OTU4 28GBd PM-QPSK RX

1x 100Gb/s λ Architecture

SD FEC requires 32Gbd RX
OTU4 OSNR Limited BER

![Graph showing BER vs. Q (dB) for different generations of FEC codes.]

<table>
<thead>
<tr>
<th>Year</th>
<th>Coding Scheme</th>
<th>Net Coding Gain (@ 10^{-13})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>Block Turbo Code, LDPC</td>
<td>~10dB</td>
</tr>
<tr>
<td>2000</td>
<td>Concatenated RS, BCH</td>
<td>7~9dB</td>
</tr>
<tr>
<td>1993</td>
<td>RS(255,239)</td>
<td>5.8dB</td>
</tr>
</tbody>
</table>

Outline

- Ethernet & Transport Compatibility
- 100Gb/s Ethernet Technology
- Beyond 100Gb/s Ethernet Technology
- 100Gb/s Transport Technology
 - Beyond 100Gb/s Transport Technology
- Recommendations
OTN Spectral Efficiency Limits

- OTU4 rate: $\sim112\text{Gb/s}$
- OTU4 technology: 100Gb/s in 50GHz: $\sim2\text{bits/sec-HZ}$
- Theoretical capacity of standard SMF: $\sim8\text{bits/sec-HZ}$

- Practical equipment and fiber limit for standard SMF over typical LH distances (1000km or longer): $\sim4\text{bits/sec-HZ}$

- 2x left for improving spectral efficiency for LH applications, ex. 400Gb/s in 100GHz: $\sim4\text{bits/sec-Hz}$
OTU5 Rate

- 400GbE rate = \(~412\text{Gb/s}\)
- To efficiently carry 400GbE, OTU5 = \(~450\text{Gb/s}\)
- 20% SD FEC transport rate = \(~500\text{Gb/s}\)
- 100GHz channel bandwidth gives \(~2\times\) spectral efficiency increase over OTU4
- Maintains 4x traditional OTN rate jump, ex. OTU2 to OTU3
- Allows extending OTU4 DP-QPSK technology
- Higher OTU5 rate has no spectral efficiency benefits ex.\(1\text{Tb/s}\) only increases bandwidth
OTU5 28GBd PM-16QAM TX (1 of 2)

2x 200Gb/s λ Architecture

FEC Encoder

Precoder

16-QAM Signal Mapping

DAC

MZM

X-pol

Laser

PBC

PM-16QAM

Precoder

16-QAM Signal Mapping

DAC

MZM

Y-pol
OTU5 28GBd PM-16QAM RX (1 of 2)

2x 200Gb/s λ Architecture

Receiver

PBS LO × Y

90° 90° 90° 90°
hyb hyb

PD

Frequency control feedback

Automatic gain control

Digital coherent ASIC

Clock Recovery

Equalization

Carrier recovery

SPM Comp.

Control

Hard Decision Decoder

Hard Decision Decoder

FEC Decoder

Performance Analysis Point
Linear analysis of 224Gb/s λ in 50GHz channel with ASE noise
OTU5 28GBd PM-TC-32QAM TX (1 of 2)

2x 200Gb/s λ Architecture

TCM: Trellis Coded Modulation
OTU5 28GBd PM-TC-32QAM RX (1 of 2)

2x 200Gb/s λ Architecture

OTU5 28GBd PM-TC-32QAM BER

Linear analysis of 224Gb/s λ in 50GHz channel with ASE noise
OTU5 18GBd PM-TC-16QAM TX (1 of 4)

4x 100Gb/s λ Architecture

TCM: Trellis Coded Modulation
OTU5 18GBd PM-TC-16QAM BER

Linear analysis of 112Gb/s λ in 25GHz channel with ASE noise
OTU5 400Gb/s Alternatives Summary

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Per λ channel BW GHz</th>
<th>Rate GBaud</th>
<th>Spectral Efficiency bits/sec-Hz</th>
<th>ΔOSNR* pre-FEC BER=1.e-3 dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>single 112 Gb/s λ PM-QPSK</td>
<td>50</td>
<td>28</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>dual 224 Gb/s λ PM-16QAM</td>
<td>50</td>
<td>28</td>
<td>4</td>
<td>6.7</td>
</tr>
<tr>
<td>dual 224 Gb/s λ PM-TC-32QAM</td>
<td>50</td>
<td>28</td>
<td>4</td>
<td>4.3</td>
</tr>
<tr>
<td>quad 112 Gb/s λ PM-TC-16QAM</td>
<td>25</td>
<td>18.7</td>
<td>4</td>
<td>2.1</td>
</tr>
</tbody>
</table>

* At constant 50GHz channel AOP without non-linear constraints
OTN Rate Beyond OTU5

- OTU5 = ~450Gb/s to efficiently carry 400GbE
- OTU6 will efficiently carry following Ethernet
- If following Ethernet is 1.6TbE, OTU6 = ~1.8Tb/s
- 20% SD FEC transport rate = ~2Tb/s
- Spectral efficiency will only increase with new type of fiber or fundamentally different approaches to the SMF channel
- Technology for transport rates above 500Gb/s (ex. 1Tb/s) does not exist and will require extensive R&D
Outline

- Ethernet & Transport Compatibility
- 100Gb/s Ethernet Technology
- Beyond 100Gb/s Ethernet Technology
- 100Gb/s Transport Technology
- Beyond 100Gb/s Transport Technology

➢ Recommendations
Recommendations

Next Ethernet and OTN (OTU5) rates are likely to be ~400Gb/s

- Focus engineering development on 500Gb/s
- Double OTN spectral efficiency to 4bits/sec-Hz
- Extend 100GbE and OTU4 28GBd PM-QPSK technology

Following Ethernet and OTN rates are preferably >1.6Gb/s

- Focus fundamental research on at least 2Tb/s
- Quadruple OTN spectral efficiency to at least 8bits/sec-Hz
- Invent new modulation, DSP, device and fiber technology

There will be no ~1Tb/s Ethernet or OTN rates

- Neither a good engineering or research objective
Conclusion

1Tb/s Researchers praying for guidance