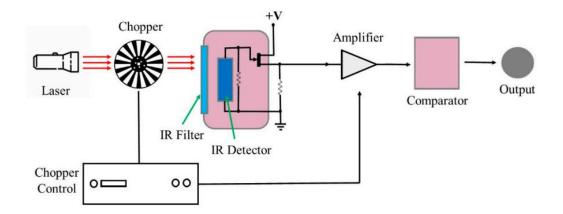
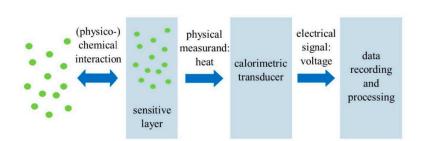
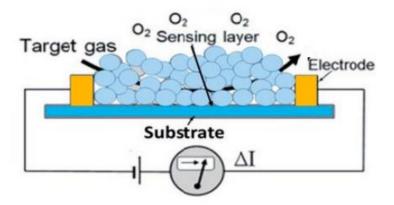

2 DFB for Gas Sensing

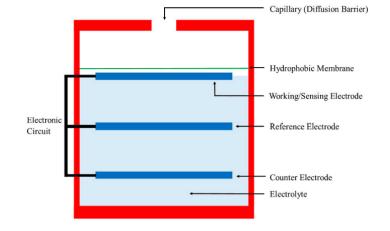
18 October


© DenseLight Semiconductors I Confidential Information

Methane Gas Sensing Technologies

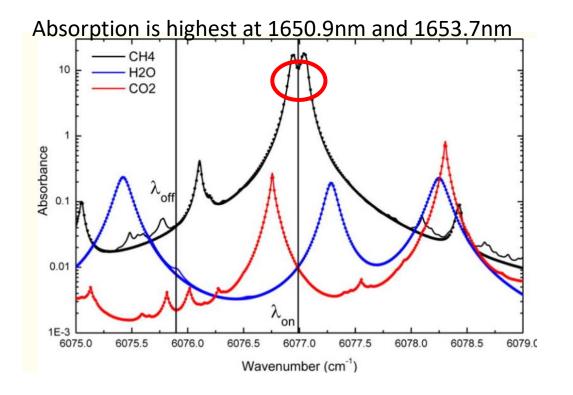


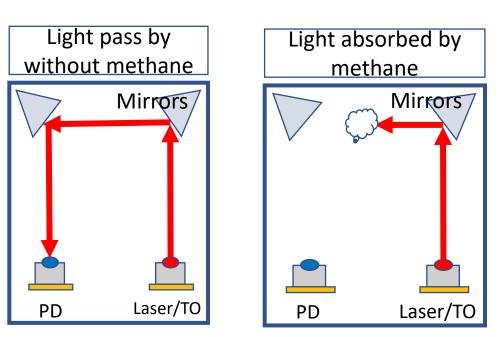

Optical gas sensor by infrared absorption spectroscopy


Pyroelectric sensor based on infrared heating

Calorimetric gas sensor

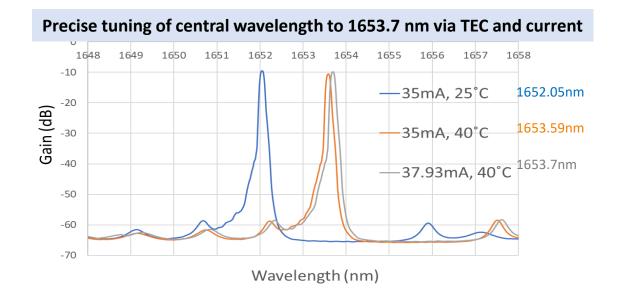
Semiconducting metal oxides

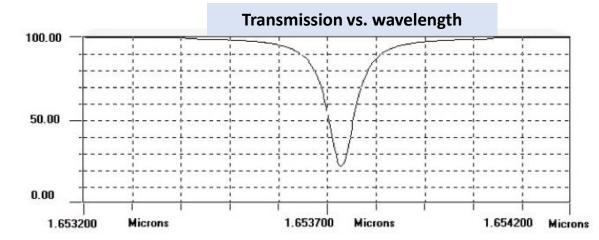

Schematic of an electrochemical sensor

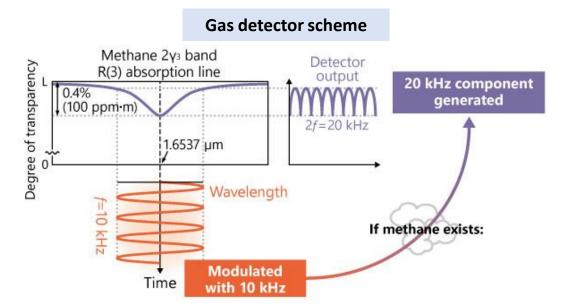

Source: A Review of Methane Gas Detection Sensors: Recent Developments and Future Perspectives, Inventions 2020, 5, 28

DFB for Methane Gas Optical Sensing: Principle

实光半导体 DenseLight


This means for a setup that maintains a wavelength of 1653.7nm, most of the power will be absorbed. Reflected power will be lost, hence the detection capability




DFB for Methane Gas Sensing: Detection Scheme

- The central wavelength at TEC temperature of 25°C with bias current of 35mA is 1652.05 nm
- It is tuned to 1653.59 nm by tuning the TEC temperature to 40°C alone.
- A fine tuning to achieve 1653.7 nm is then completed by increasing the bias current to 37.93mA.
- Wavelength is tuned by modulating bias current. The gas detector detects the 1f and 2f components, and determines the gas concentration.

Comparison of Different Methane Sensors (1)

Sensor Types	Working Mechanisms	Advantages	Disadvantages
Optical sensors	Detect changes in light waves that result from an interaction of the analyte with the receptor part.	 Non-destructive method; Immune to electromagnetic interference; Operate without oxygen; Fast response time. 	Need to achieve low cost
Calorimetric sensors	Measure the heat produced from a reaction and correlate the value to the reactant concentration.	 Low cost; Simplistic design; Portable; Easy to manufacture; Good selectivity for methane; Can operate in harsh environmental conditions. 	 Low detection accuracy; Susceptible to cracking, catalyst poisoning and oversaturation; High power consumption; Short lifespan; Require high temperature
Pyroelectric sensors	Convert thermal energy into electrical energy based on the phenomenon of pyroelectricity.	 Non-destructive; Operate without oxygen; Good sensitivity and responsivity; Wide measuring range; Operate at room temperature. 	 High cost; High power consumption; Immobile; Difficult to manufacture.

Comparison of Different Methane Sensors (2)

Sensor Types	Working Mechanisms	Advantages	Disadvantages
Semiconducting metal oxide sensors	Absorption of gas on the surface of a metal oxide changes its conductivity, which is then quantified to obtain the gas concentration.	 Low cost; Lightweight and robust; Long lifespan; Resistant to poisoning. 	 Poor selectivity; Small and high operational temperature range; Slow recovery rate; Significant additive dependency; Affected by temperature; Susceptible to degradation; Sensitive to changes in humidity
Electrochemical sensors	Measure the target gas concentration by oxidizing or reducing the gas at an electrode and measuring the resulting current.	 AE-based: Low cost IL-based: Non-hazardous materials; High boiling points and low volatility; Good selectivity for methane; Can detect small leaks. SE-based: No leakage; Safe; Robust; Good selectivity for methane; Can detect small leaks. 	 AE-based: Susceptible to leakage and evaporation; Hazardous materials; Slow response time. IL-based: Susceptible to leakage; Slow response time. SE-based: Require high temperature; Unable to detect low gas concentrations; Susceptible to degradation or loss of electrolyte.

• DFB for Methane Gas Sensing is a non-destructive optical sensor method, which is immune to electromagnetic interference, operate without oxygen, and achieve fast response time.

Accuracy and real-time detection of methane gas is very important, which is used in many scenarios, including natural gas pipeline leakage monitoring, household safety and coal mining safety production monitoring.

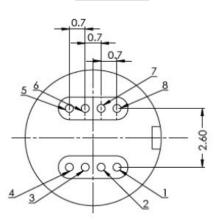
DenseLight 1653.7 nm DFB laser is widely used in applications where accurate measurement of methane is required. By adjusting the temperature and driver current of the DFB laser device, methane concentration can be detected in real time and on line, providing the advantages of extra full concentration detection range, high accuracy and good selectivity.

Our 1653.7nm DFB laser assembly allows easy integration into commercially available methane gas sensors platform for our customers

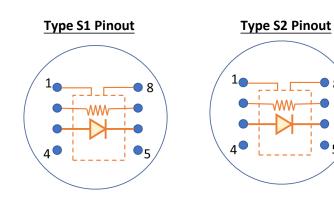
Product Wavelength (nm)	Product Code	Package	
	DL-DFB65310A	14pin BTF	
1653nm DFB	DL-DFB65404T-C-S	TO-60	
	DL-DFB65407D	Die	

A	pplication
	OTDR
	Gas Sensing
	Biomedical Sensing
	Telecommunications

TO DFB Product for Methane Gas Sensing


- The DL-DFB65404T-C-Sx is an InGaAsP based and cooled distributed feedback laser in a low cost TO60 package, with a collimated output, optimized for methane sensing applications.
- Denselight's advanced technology enables mode-hop free tunability, high power, excellent SMSR, and high accuracy of the lasing wavelength.

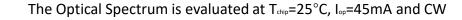
Features

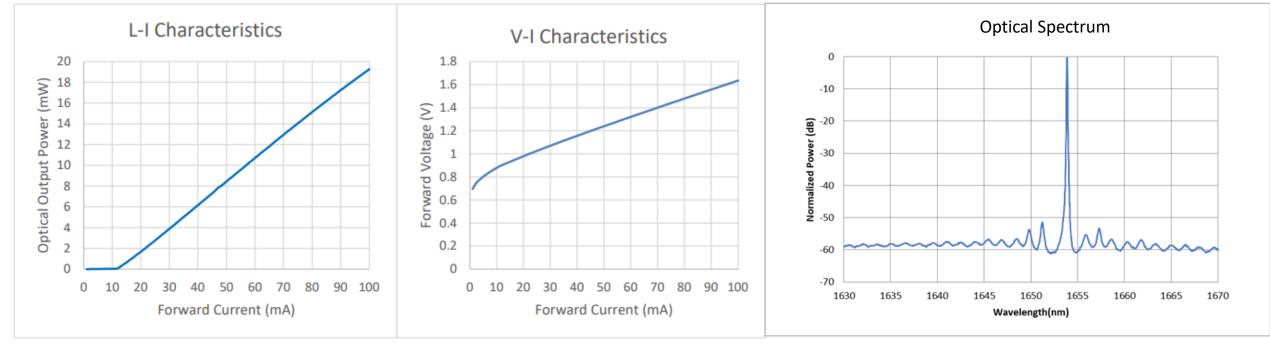

Pin out

- Optical output power : > 3.5mW
- Peak wavelength : 1653.7 ±1nm
- Typical SMSR of 40dB

PIN	S1 Type	S2 Type
1	TEC-	TEC-
2	Thermistor+	Thermistor+
3	LD+	LD+
4	NC	NC
5	NC	NC
6	LD-	LD-/ Thermistor-
7	Thermistor-	LD-/ Thermistor-
8	TEC+	TEC+

Bottom View


Note


- Type-S1 is standard products
- Type-S1 and Type-S2: Both have the same functional pinout
- Type-S2 has Pins 6,7 shorted, it provides better thermal tracking of LD, hence lower wavelength and current drift during ambient temperature change.

TO DFB Product for Methane Gas Sensing

The L-I and V-I characteristics are evaluated at T_{chip}=25°C and CW

Electrical and Optical Characteristics

Product code: DL-DFB65404T-C-S (1653.7nm Cooled TO-can with Collimated Output)

The performance is evaluated at T_{chip} of 25°C and CW, unless stated otherwise

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Peak wavelength	λρ	լ _{ջք} = 45mA	1652.7	1653.7	1654.7	nm
Optical output power	Po	լ _{ջք} = 45mA	3.5	8	13	mW
Threshold current	L _{th}	-	-	12	-	mA
Operating current	Lop	-	-	45	-	mA
Operating Voltage	Vop	l _{op} = 45mA	-	1.2	1.6	V
Side mode suppression ratio	SMSR	l _{op} = 45mA	-	40	-	dB
Wavelength Temperature Tuning Coefficient	<u>Δλ/Δ</u> Τ	-	0.07	0.1	0.14	nm/°C
Wavelength Current Tuning Coefficient	Δλ/ΔΙ	-	0.008	0.01	0.03	nm/mA
Spot Size	SS	Optical path = 80mm	-	3	5	mm
Optical Linewidth	Δf	l _{op} = 45mA	-	-	2	MHz
Thermistor Resistance	Rth	25°C	9.5	10	10.5	kΩ
B constant of R _{th}	В	-	-	3930	-	К
Case Temperature	Tcase	<mark>Լ</mark> ջք = 45mA	-30	-	60	°C

Note: T_{chip} is monitored by internal thermistor with external pin out

Proven Reliability

Test	Reference	Test	Sample	Pass/Fail	Test
		Conditions	Size	Criteria	Status
Accelerated Life	GR-468	70°C, 80mA, ACC	39	δPo >20%	pass
Test (HTOL)	issue 2	mode, 2000hrs		0/22 fails	
	Section 3.4.1				
Temp Cycling	MIL-STD-883C	-40°C to 85°C,	13	δPo >20%	pass
	Method 1004.7	10°C/min ramp		0/11 fails	
		rate			
		100 cycles			
Thermal Shock	MIL-STD-883E	Cond. A 0 and	11	δPo >20%	pass
	Method 1011.9	100°C		0/11 fails	
		Dwell			
		time>5min/temp			
High Temp	GR-468 issue 2	85°C, 2000hrs	15	δPo >20%	pass
Storage	Section 3.3.2.1			0/11 fails	
Low Temp Storage	GR-468 issue 2	-40°C, 72hrs	22	δPo >20%	pass
	Section 3.3.2.1			1/22 fails	
ESD-HBM	FOTP-129	3 units subjected	6	δPo >20%	pass
		to positive		0/11 fails	
		pulses and 3 to		-	
		negative pulses			
		up to 500V			
Die Shear	MIL-STD-883E	Contact tool to	11	31g	pass
	Method 2019.6	load against die		0/11 fails	
		edge			
Wire Bond	MIL-STD-883E	Wire-pull (single	11	5gf wire	pass
	Method 2011.7	bond)		strength	
				0/11 fails	
Vibration	MIL-STD-883E	Cond A, 20G, 20-	11	δPo >20%	pass
	Method 2007.3	2000Hz,		0/11 fails	
		4min/cycle,			
		4cycles/axis			
Mechanical Shock	MIL-STD-883E	1500G, 0.5ms, 6	11	δPo >20%	pass
	Method 2002.4	axis, 5 times/axis		0/11 fails	

Requirements	Benefits of DenseLight
Low cost	Chip designed and manufactured in DenseLight own fab Low cost TO-60 platform
Low power consumption	Internal design and fab capability allow lower power consumption
High performance	 More than 3mW output power at 45mA operation current Typical SMSR of 40dB
Reduced form factor	COS, TO and BTF available
Extended temperature	 -30~60C standard product Larger temperature range is available per request
Long-term stability and high reliability	Aging to stabilize output powerTelcordia qualified