

This product is sold and supported by



LASER LAB SOURCE marketplace for Scientists & Engineers

contact@LaserLabSoure.com

800.887.5065

# **3SPTechnologies**Source of Smart Solutions





## Active Components Pump Laser Modules

## **Key** Features

Up to 950mW Pop

Low Power Consumption

Extended operating temperature range (-5 °C to +75 °C)

Fiber Bragg Grating (FBG) on PMF

High wavelength and power stability

RoHS compliant

## **Applications**

High output power low noise EDFAs

Dense wavelength division multiplexing EDFAs

CATV

## 1999CVB

## 980 nm Cooled Pump Laser Module 1050mW Kink-free with PM Fiber

The 1999CVB is a new generation of 980 nm terrestrial pump modules powered by an in-house chip technology fully qualified, ensuring an outstanding level of performance and reliability.

Low Profile, 14-pin butterfly modules are available with an operating power up to 950 mW.

They incorporate a thermoelectric cooler (TEC), a precision NTC thermistor and a back-facet monitoring photodiode.

The 1999CVB family has been designed to ensure high wavelength and power stability performance at low power.

## For more Info

Please contact us at: Europe & Asia: +33 169 805 750 North America: +1 514 748 4848, Ext 4374 customerservice@3spgroup.com www.3sptechnologies.com

1050mW Kink-free, FBG Stabilized, 980 nm Cooled Pump Laser Module with PMF pig-tail







### **ELECTRO-OPTICAL CHARACTERISTICS**

The following parameters are specified BOL for a  $T_{submount}$  = 25 °C,  $T_{case}$  = -5 °C to 75 °C,  $V_{BFM}$ = -5 V and -50 dB max back-reflection unless otherwise stated.

| Parameters                                                        | Conditions                                                                                                                                                                 | Symbol                 | Min                        | Тур                        | Max                                          | Unit    |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------|----------------------------|----------------------------------------------|---------|
| PUMP LASER                                                        |                                                                                                                                                                            |                        |                            |                            |                                              |         |
| Threshold current (1)                                             |                                                                                                                                                                            | Ith                    | -                          |                            | 100                                          | mA      |
| Nominal operating power                                           |                                                                                                                                                                            | P <sub>nom</sub>       | 700                        | -                          | 950                                          | mW      |
| Kink free power (2)                                               |                                                                                                                                                                            | P <sub>kink</sub>      | 1.1 x P <sub>nom</sub>     | -                          | -                                            | mW      |
| Forward current (3)                                               | P <sub>nom</sub> = 700 mW<br>P <sub>nom</sub> = 750 mW<br>P <sub>nom</sub> = 800 mW<br>P <sub>nom</sub> = 850 mW<br>P <sub>nom</sub> = 900 mW<br>P <sub>nom</sub> = 950 mW | I <sub>nom</sub>       | -<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>- | 1270<br>1360<br>1450<br>1520<br>1575<br>1575 | mA      |
| Forward voltage                                                   | @ 950 mW                                                                                                                                                                   | V <sub>nom</sub>       | -                          |                            | 2                                            | V       |
| Peak wavelength tolerance                                         | @ T <sub>case</sub> = T <sub>FBG</sub> = 25 °C<br>Power Range                                                                                                              | $\Delta\lambda_{p}$    | -                          | -                          | ±1                                           | nm      |
| Wavelength tuning vs temperature (T <sub>FBG</sub> = -5 to 75 °C) | Power Range                                                                                                                                                                | Δλρ / ΔΤ               | -                          | -                          | 0.02                                         | nm / °C |
| Spectral width @ -3 dB                                            | Power Range                                                                                                                                                                | Δλεωμμ                 | -                          | -                          | 1.0                                          | nm      |
| Power range                                                       |                                                                                                                                                                            |                        | 30                         |                            | P <sub>nom</sub>                             | mW      |
| Power in band (4)                                                 | P <sub>nom</sub>                                                                                                                                                           | P <sub>band</sub>      | 90                         | -                          | -                                            | %       |
| Optical power stability                                           | Peak to peak,<br>1 Hz-50 kHz, 60 sec,<br>30mW≤P<50mW<br>50mW≤P≤P <sub>nom</sub>                                                                                            | ΔΡ                     | -                          |                            | 0.2<br>0.1                                   | dB      |
| Power consumption, EOL                                            | 1.1 P <sub>nom</sub> = 950 mW                                                                                                                                              |                        | -                          | -                          | 9                                            | W       |
| Polarization Extinction Ratio (5)                                 | Tcase=25°C                                                                                                                                                                 |                        | 13                         |                            |                                              | dB      |
| MONITOR DIODE                                                     |                                                                                                                                                                            |                        |                            |                            |                                              |         |
| Responsivity                                                      |                                                                                                                                                                            | I <sub>BFM</sub> / P   | 0.5                        | -                          | 10                                           | μA / mW |
| Dark current                                                      | V <sub>r</sub> = 5 V                                                                                                                                                       | BFM dark               | -                          | -                          | 100                                          | nA      |
| THERMO-ELECTRICAL COOLER                                          |                                                                                                                                                                            |                        |                            |                            |                                              |         |
| TEC voltage (EOL)                                                 | T <sub>case</sub> = 75 °C,                                                                                                                                                 | V <sub>TEC</sub> , EOL | -                          | -                          | 3.4                                          | V       |
| TEC current (EOL)                                                 | 4.4.D. 050 111                                                                                                                                                             | ITEC, EOL              | -                          | -                          | 1.6                                          | А       |
| TEC Power consumption                                             | 1.1 P <sub>nom</sub> =950mW                                                                                                                                                | P <sub>TEC</sub> , EOL | -                          | -                          | 5.45                                         | W       |
| THERMISTOR                                                        |                                                                                                                                                                            |                        |                            |                            |                                              |         |
| Resistance                                                        | 25 °C                                                                                                                                                                      | Rth                    | 9.5                        | -                          | 10.5                                         | kΩ      |
| Constant                                                          |                                                                                                                                                                            | β                      | 3600                       | -                          | 4200                                         | K       |

<sup>(1)</sup> Ith is the intersection point with the x-axis of a linear fit of the P(I) curve between 15 mW and 50 mW

<sup>(2)</sup> A kink is detected when the local slope dP/dI is below S<sub>min</sub> or above S<sub>max</sub>. S<sub>min</sub> is defined as 0.5xS<sub>avq</sub> and S<sub>max</sub> is defined as 1.5xS<sub>avq</sub>

<sup>(3)</sup> EOL forward current I(EOL)= 1.1x I(BOL)

<sup>(4)</sup>  $P_{band}$  is defined as the power within the band  $\lambda p \pm 1.5$  nm vs the total output power

<sup>(5)</sup> The intensity noise is sensitive to varying stress (by mechanical and temperature effects) introduced to the PM fiber. Measurement is performed at

<sup>25°</sup>C case temperature

1050mW Kink-free, FBG Stabilized, 980 nm Cooled **Pump Laser Module with** PMF pig-tail







### ABSOLUTE MAXIMUM RATINGS

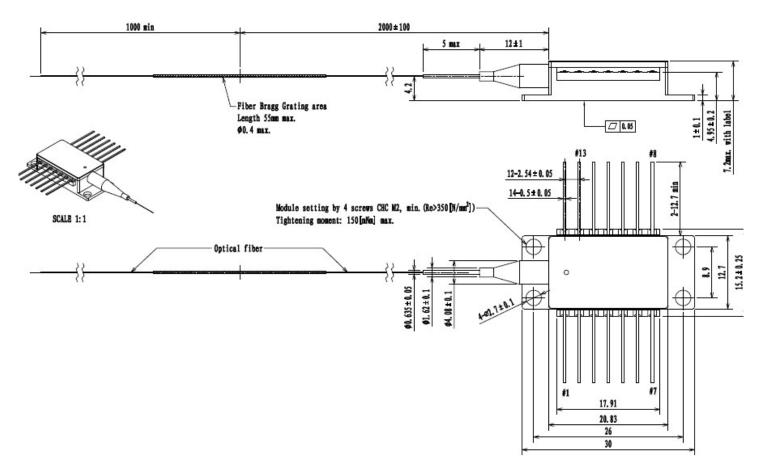
Exposing this device to stresses and conditions above those listed in this section could cause permanent damage and affect reliability. The device is not meant to operate outside the operational limits described in previous section at any length of time.

| Parameter Conditions                                   | Symbol                 | Min | Max  | Unit |
|--------------------------------------------------------|------------------------|-----|------|------|
| Storage temperature (2000 h)                           | T <sub>stg</sub>       | -40 | 85   | °C   |
| Operating temperature (T <sub>submount</sub> = 25 °C)* | Top                    | -20 | 75   | °C   |
| Lead soldering temperature (10 s maximum)              |                        | -   | 280  | °C   |
| Storage Relative Humidity (Non Condensing)             |                        | 5   | 95   | %    |
| Operating Relative humidity                            |                        | 5   | 85   | %    |
| LD forward drive current (10 s maximum)                | I <sub>f_max</sub>     | -   | 1800 | mA   |
| LD reverse voltage                                     | $V_{r\_max}$           | -   | 2.0  | V    |
| LD reverse current                                     | I <sub>rev</sub>       |     | 10   | μA   |
| PD reverse voltage                                     | V <sub>PD_max</sub>    | -   | 15   | V    |
| PD forward current                                     | I <sub>PD_max</sub>    | -   | 10   | mA   |
| TEC voltage                                            | V <sub>TEC_C_max</sub> | -   | 4.2  | V    |
| TEC current                                            | I <sub>TEC_C_max</sub> | -   | 3.2  | Α    |
| ESD** LD damage                                        | V <sub>ESD-LD</sub>    | -   | 1000 | V    |
| ESD** MPD damage                                       | V <sub>ESD-MPD</sub>   |     | 500  | V    |
| Mounting torque                                        |                        | -   | 150  | mN.m |
| Fiber bend radius                                      |                        | 16  | -    | mm   |
| Axial pull force (1x1 min)                             |                        | -   | 5    | N    |

## FIBER PIGTAIL CHARACTERISTICS

| Parameter                  | Note                              | Min                          | Тур | Max | Unit |
|----------------------------|-----------------------------------|------------------------------|-----|-----|------|
| Fiber type                 |                                   | SM98-PS-U25D-H or equivalent |     |     |      |
| Coating diameter           | (except along grating)            | 230                          | 250 | 270 | μm   |
| FBG recoat diameter        |                                   | -                            | -   | 400 | μm   |
| FBG position               | Module to center of FBG           | -                            | 2   | -   | m    |
| Loose tube buffer diameter |                                   | 885                          | -   | 915 | μm   |
| Fiber proof test level     |                                   | 200                          | -   | -   | kpsi |
| Grating proof test level   |                                   | 150                          | -   | -   | kpsi |
| Pigtail termination        | Bare fiber                        |                              |     |     |      |
| Polarization State         | Aligned parallel to the slow axis |                              |     |     |      |

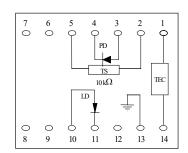
 $<sup>^*</sup>$  No cold start. TEC will be turned on first. \*\* Human Body model, C = 100 pF, R = 1.5 k $\!\Omega$ 


1050mW Kink-free, FBG Stabilized, 980 nm Cooled Pump Laser Module with PMF pig-tail








## **MECHANICAL DETAILS**



Dimensions are in mm

### PIN ASSIGNEMENT

| N° | Description        | N° | Description       |
|----|--------------------|----|-------------------|
| 1  | TEC (+)            | 8  | No connect        |
| 2  | Thermistor         | 9  | No connect        |
| 3  | Monitor PD Anode   | 10 | Laser Anode (+)   |
| 4  | Monitor PD Cathode | 11 | Laser Cathode (-) |
| 5  | Thermistor         | 12 | No connect        |
| 6  | No connect         | 13 | Ground            |
| 7  | No connect         | 14 | TEC (-)           |



Totally floating pin-out

1050mW Kink-free, FBG Stabilized, 980 nm Cooled Pump Laser Module with PMF pig-tail







### LASER SAFETY INFORMATION

This laser module emits invisible light. Take appropriate precautions to prevent undue exposure to naked eye when module is in operation. This product is classified Class 4 Laser Product according to IEC-60825-1.

#### **HANDLING**

This product is sensitive to electrostatic discharge and should not be handled except at a static free workstation. Take precautions to prevent ESD; use wrist straps, grounded work surfaces and recognized anti-static techniques when handling the pump laser module. Caution! Handle the module by its package only; never hold it by its pigtail. Care should be taken to avoid supply transient currents and voltages. Drive voltage above the maximum specified in absolute maximum rating section may cause permanent damage to the device.





#### APPLICATION **NOTE**

In order to prevent any mishandling, misuse, neglect or accident, it is highly recommended to read and follow the instructions detailed in the application note:

http://www.3sptechnologies.com/data/File/3SP AN AC Cooled-BTF-Pumps R1407 RCLIMAAPN00000007 01.pdf

#### ORDERING INFORMATION

1999CVB PUMP PRODUCT FAMILY

| PMF<br>Pigtail   | λ <sub>p</sub> = 974.0 nm,<br>T= 25 °C | λ <sub>p</sub> = 976.0 nm<br>T= 25 °C | λ <sub>p</sub> = 979.5 nm<br>T= 25 °C | λ <sub>p</sub> = 981 nm<br>T= 25 °C |
|------------------|----------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------|
| Nominal<br>Power | Part<br>Number                         | Part<br>Number                        | Part<br>Number                        | Part<br>Number                      |
| 700mW            | 3CN01764GA                             | 3CN01765GA                            | 3CN01800GA                            | 3CN01766GA                          |
| 750mW            | 3CN01764GL                             | 3CN01765GL                            | 3CN01800GL                            | 3CN01766GL                          |
| 800mW            | 3CN01764HA                             | 3CN01765HA                            | 3CN01800HA                            | 3CN01766HA                          |
| 850 mW           | 3CN01764HL                             | 3CN01765HL                            | 3CN01800HL                            | 3CN01766HL                          |
| 900mW            | 3CN01764JA                             | 3CN01765JA                            | 3CN01800JA                            | 3CN01766JA                          |
| 950 mW           | 3CN01764JL                             | 3CN01765JL                            | 3CN01800JL                            | 3CN01766JL                          |

1050mW Kink-free, FBG Stabilized, 980 nm Cooled Pump Laser Module with PMF pig-tail







#### CONTACT INFORMATION

Please contact us at:

Europe & Asia: +33 169 805 750

North America: +1 514 748 4848, Ext 4374

customerservice@3spgroup.com www.3sptechnologies.com

#### IMPORTANT **NOTICE**

Information in this document is typical and must be specifically confirmed in writing by your supplier before it becomes applicable to any order or contract.

Information is subject to change without notice.

©2019 3SP Technologies S.A.S.

